273 research outputs found

    Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach

    Full text link
    LoRaWAN is one of the most promising standards for IoT applications. Nevertheless, the high density of end-devices expected for each gateway, the absence of an effective synchronization scheme between gateway and end-devices, challenge the scalability of these networks. In this article, we propose to regulate the communication of LoRaWAN networks using a Slotted-ALOHA (S-ALOHA) instead of the classic ALOHA approach used by LoRa. The implementation is an overlay on top of the standard LoRaWAN; thus no modification in pre-existing LoRaWAN firmware and libraries is necessary. Our method is based on a novel distributed synchronization service that is suitable for low-cost IoT end-nodes. S-ALOHA supported by our synchronization service significantly improves the performance of traditional LoRaWAN networks regarding packet loss rate and network throughput.Comment: 4 pages, 8 figure

    Lightweight Synchronization Algorithm with Self-Calibration for Industrial LORA Sensor Networks

    Full text link
    Wireless sensor and actuator networks are gaining momentum in the era of Industrial Internet of Things IIoT. The usage of the close-loop data from sensors in the manufacturing chain is extending the common monitoring scenario of the Wireless Sensors Networks WSN where data were just logged. In this paper we present an accurate timing synchronization for TDMA implemented on the state of art IoT radio, such as LoRa, that is a good solution in industrial environments for its high robustness. Experimental results show how it is possible to modulate the drift correction and keep the synchronization error within the requirements

    A Software-based Low-Jitter Servo Clock for Inexpensive Phasor Measurement Units

    Full text link
    This paper presents the design and the implementation of a servo-clock (SC) for low-cost Phasor Measurement Units (PMUs). The SC relies on a classic Proportional Integral (PI) controller, which has been properly tuned to minimize the synchronization error due to the local oscillator triggering the on-board timer. The SC has been implemented into a PMU prototype developed within the OpenPMU project using a BeagleBone Black (BBB) board. The distinctive feature of the proposed solution is its ability to track an input Pulse-Per-Second (PPS) reference with good long-term stability and with no need for specific on-board synchronization circuitry. Indeed, the SC implementation relies only on one co-processor for real-time application and requires just an input PPS signal that could be distributed from a single substation clock

    Instance-based Learning with Prototype Reduction for Real-Time Proportional Myocontrol: A Randomized User Study Demonstrating Accuracy-preserving Data Reduction for Prosthetic Embedded Systems

    Full text link
    This work presents the design, implementation and validation of learning techniques based on the kNN scheme for gesture detection in prosthetic control. To cope with high computational demands in instance-based prediction, methods of dataset reduction are evaluated considering real-time determinism to allow for the reliable integration into battery-powered portable devices. The influence of parameterization and varying proportionality schemes is analyzed, utilizing an eight-channel-sEMG armband. Besides offline cross-validation accuracy, success rates in real-time pilot experiments (online target achievement tests) are determined. Based on the assessment of specific dataset reduction techniques' adequacy for embedded control applications regarding accuracy and timing behaviour, Decision Surface Mapping (DSM) proves itself promising when applying kNN on the reduced set. A randomized, double-blind user study was conducted to evaluate the respective methods (kNN and kNN with DSM-reduction) against Ridge Regression (RR) and RR with Random Fourier Features (RR-RFF). The kNN-based methods performed significantly better (p<0.0005) than the regression techniques. Between DSM-kNN and kNN, there was no statistically significant difference (significance level 0.05). This is remarkable in consideration of only one sample per class in the reduced set, thus yielding a reduction rate of over 99% while preserving success rate. The same behaviour could be confirmed in an extended user study. With k=1, which turned out to be an excellent choice, the runtime complexity of both kNN (in every prediction step) as well as DSM-kNN (in the training phase) becomes linear concerning the number of original samples, favouring dependable wearable prosthesis applications

    Low-cost and distributed health monitoring system for critical buildings

    Get PDF
    In this paper we present a low-cost distributed embedded system for Structural Health Monitoring (SHM) that uses very cost-effective MEMS accelerometers, instead of more expensive piezoelectric analog transducers. The proposed platform provides online filtering and fusion of the collected data directly on-board. Data are transmitted after processing using a WiFi transceiver. Low-cost and synchronized devices permit to have more fine-grained measurements and a comprehensive assessment of the whole building, by evaluating their response to vibrations. The challenge addressed in this paper is to execute a quite computationally-demanding digital filtering on a low-cost microcontroller STM32, and to reduce the signal-to-noise ratio typical of MEMS devices with a spatial redundancy of the sensors. Our work poses the basis for low-cost methods for elaborating complex modal analysis of buildings and structures

    Flora Health Wireless Monitoring with Plant-Microbial Fuel Cell

    Get PDF
    Abstract We propose a self-sustainable wireless sensor node capable to monitor both environmental data and flora health state, exploiting a Microbial Fuel Cell combined with a plant. This bio-electrochemical system is used both as a power generator to supply the wireless embedded electronics and as a biosensor for estimating the status of the plant. We demonstrate that the sub-milliwatt power provided by the fuel cell is enough for achieving an energy-neutral smart sensor that samples and sends data. Moreover, the rate of the harvested power is correlated with the health of the flora living in symbiosis with the bacteria colony. The proposed system has been conceived to address the needs of future smart agriculture applications, providing an unobtrusive and energy neutral monitoring system open to a broad range of applications, thanks to the bacteria species that populate almost any soil on Earth

    Real-time scheduling for energy harvesting sensor nodes

    Get PDF
    Energy harvesting has recently emerged as a feasible option to increase the operating time of sensor networks. If each node of the network, however, is powered by a fluctuating energy source, common power management solutions have to be reconceived. This holds in particular if real-time responsiveness of a given application has to be guaranteed. Task scheduling at the single nodes should account for the properties of the energy source, capacity of the energy storage as well as deadlines of the single tasks. We show that conventional scheduling algorithms (like e.g. EDF) are not suitable for this scenario. Based on this motivation, we have constructed optimal scheduling algorithms that jointly handle constraints from both energy and time domain. Further we present an admittance test that decides for arbitrary task sets, whether they can be scheduled without deadline violations. To this end, we introduce the concept of energy variability characterization curves (EVCC) which nicely captures the dynamics of various energy sources. Simulation results show that our algorithms allow significant reductions of the battery size compared to Earliest Deadline First schedulin

    A Survey of Multi-Source Energy Harvesting Systems

    No full text
    Energy harvesting allows low-power embedded devices to be powered from naturally-ocurring or unwanted environmental energy (e.g. light, vibration, or temperature difference). While a number of systems incorporating energy harvesters are now available commercially, they are specific to certain types of energy source. Energy availability can be a temporal as well as spatial effect. To address this issue, ‘hybrid’ energy harvesting systems combine multiple harvesters on the same platform, but the design of these systems is not straightforward. This paper surveys their design, including trade-offs affecting their efficiency, applicability, and ease of deployment. This survey, and the taxonomy of multi-source energy harvesting systems that it presents, will be of benefit to designers of future systems. Furthermore, we identify and comment upon the current and future research directions in this field

    Hibernus: sustaining computation during intermittent supply for energy-harvesting systems

    No full text
    A key challenge to the future of energy-harvesting systems is the discontinuous power supply that is often generated. We propose a new approach, Hibernus, which enables computation to be sustained during intermittent supply. The approach has a low energy and time overhead which is achieved by reactively hibernating: saving system state only once, when power is about to be lost, and then sleeping until the supply recovers. We validate the approach experimentally on a processor with FRAM nonvolatile memory, allowing it to reactively hibernate using only energy stored in its decoupling capacitance. When compared to a recently proposed technique, the approach reduces processor time and energy overheads by 76-100% and 49-79% respectively

    Cooperative UAVs Gas Monitoring using Distributed Consensus

    Full text link
    This paper addresses the problem of target detection and localisation in a limited area using multiple coordinated agents. The swarm of Unmanned Aerial Vehicles (UAVs) determines the position of the dispersion of stack effluents to a gas plume in a certain production area as fast as possible, that makes the problem challenging to model and solve, because of the time variability of the target. Three different exploration algorithms are designed and compared. Besides the exploration strategies, the paper reports a solution for quick convergence towards the actual stack position once detected by one member of the team. Both the navigation and localisation algorithms are fully distributed and based on the consensus theory. Simulations on realistic case studies are reported.Comment: 7 pages, 6 figure
    corecore